The structure of Lie algebras with a derivation satisfying a polynomial identity
نویسندگان
چکیده
We prove nilpotency results for Lie algebras over an arbitrary field admitting a derivation, which satisfies given polynomial identity r(t) = 0. In the special case of r=tn−1 we obtain uniform bound on class periodic derivation order n. even find optimal in characteristic p if does not divide certain invariant ρn.
منابع مشابه
the structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولThe structure of a pair of nilpotent Lie algebras
Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...
متن کاملRepresentation Theory of Noetherian Hopf Algebras Satisfying a Polynomial Identity
A class of Noetherian Hopf algebras satisfying a polynomial identity is axiomatised and studied. This class includes group algebras of abelian-by-nite groups, nite dimensional restricted Lie algebras, and quantised enveloping algebras and quantised function algebras at roots of unity. Some common homological and representation-theoretic features of these algebras are described, with some indica...
متن کاملComputing Nilpotent Quotients of Associative Algebras and Algebras Satisfying a Polynomial Identity
We describe an effective algorithm to determine the maximal class-c quotient (or the maximal commutative class-c quotient) of a finitely presented associative algebra over an arbitrary field. As application, we investigate the relatively free d-generator algebras satisfying the identity xn = 0. In particular, we consider the identity x = 0 and the cases (d, n) = (2, 4) and (d, n) = (2, 5).
متن کاملthe structure of a pair of nilpotent lie algebras
assume that $(n,l)$, is a pair of finite dimensional nilpotent lie algebras, in which $l$ is non-abelian and $n$ is an ideal in $l$ and also $mathcal{m}(n,l)$ is the schur multiplier of the pair $(n,l)$. motivated by characterization of the pairs $(n,l)$ of finite dimensional nilpotent lie algebras by their schur multipliers (arabyani, et al. 2014) we prove some properties of a pair of nilpoten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2022
ISSN: ['1532-4125', '0092-7872']
DOI: https://doi.org/10.1080/00927872.2022.2069791